If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80x^2-2x-3=0
a = 80; b = -2; c = -3;
Δ = b2-4ac
Δ = -22-4·80·(-3)
Δ = 964
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{964}=\sqrt{4*241}=\sqrt{4}*\sqrt{241}=2\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{241}}{2*80}=\frac{2-2\sqrt{241}}{160} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{241}}{2*80}=\frac{2+2\sqrt{241}}{160} $
| 3m2-7m+4=0 | | -15.79−18.9w=-8.4w−7.9w+18.79 | | .1x=2.1 | | -5r^2+40r+400=0 | | 2/n-8+1/n+2=4/n^2-6n-16 | | -46-2i=46+7i.6 | | -x=x^2+5x-8 | | 4c2-9c-9=0 | | x=180-55.6-82.3 | | x2–5x–24=0 | | x+(.05x)=100000 | | x+3+9x-53=180 | | 4(5x-2)=7+x | | 5x–8=2x+28 | | x+20+5x-132=4x-28 | | 3x/2=x+5/5 | | (x+5)^3(9x–1)^4(3x+5)^3=0 | | 3x÷2=x+5÷5 | | (7x-4)2=16 | | 1x(x-1)=23x^2+3 | | 6x-5=-18 | | 6x2=48 | | 5t-2=22 | | 7x-14=4x+7= | | 5x+8=4x-12= | | (5/4)^x=(1/128) | | 1/3(2x+17)=1/6(8x-10) | | 1/3(2x-17)=1/6(8x-10) | | 8^(x+7)=12 | | 1/4(x+1/2=7/8 | | 4(3y-1)-6=3(y+2) | | 12+x/3=42 |